Computing a Homography from 2 sets of 4 points

Sebastien Kramm

June 15, 2021

For a given 2D point $\mathbf{p}=(s u, s v, s)$, the homography \mathbf{H} (homogeneous 3×3 matrix) will project it to the point $\mathbf{p}^{\prime}=\left(s u^{\prime}, s v^{\prime}, s\right)$, according to the relation $\mathbf{p}^{\prime}=\mathbf{H} \cdot \mathbf{p}$:

$$
\left[\begin{array}{cc}
s & u^{\prime} \\
s & v^{\prime} \\
s
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \cdot\left[\begin{array}{c}
s \\
s \\
s v \\
s
\end{array}\right]
$$

This expands to:

$$
u^{\prime}=\frac{s u^{\prime}}{s}=\frac{h_{11} u+h_{12} v+h_{13}}{h_{31} u+h_{32} v+h_{33}} \quad v^{\prime}=\frac{s v^{\prime}}{s}=\frac{h_{21} u+h_{22} v+h_{23}}{h_{31} u+h_{32} v+h_{33}}
$$

As \mathbf{H} is homogeneous, we can fix $h_{33}=1$, thus this can be written as:

$$
\left\{\begin{array}{l}
h_{31} u u^{\prime}+h_{32} v u^{\prime}+u^{\prime}=h_{11} u+h_{12} v+h_{13} \\
h_{31} u v^{\prime}+h_{32} v v^{\prime}+v^{\prime}=h_{21} u+h_{22} v+h_{23}
\end{array}\right.
$$

Rewritten as:

$$
\left\{\begin{array}{l}
h_{11} u+h_{12} v+h_{13}-h_{31} u u^{\prime}-h_{32} v u^{\prime}=u^{\prime} \tag{1}\\
h_{21} u+h_{22} v+h_{23}-h_{31} u v^{\prime}-h_{32} v v^{\prime}=v^{\prime}
\end{array}\right.
$$

We have 8 unknowns $h_{i j}$, that we set up in a vector \mathbf{X} :

$$
\mathbf{X}^{T}=\left[\begin{array}{llllllll}
h_{11} & h_{12} & h_{13} & h_{21} & h_{22} & h_{23} & h_{31} & h_{32}
\end{array}\right]
$$

Thus (1) can be written as (2):

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{X}=\mathbf{B} \tag{2}
\end{equation*}
$$

with:

$$
\mathbf{A}=\left[\begin{array}{llllllll}
u & v & 1 & 0 & 0 & 0 & -u u^{\prime} & -v u^{\prime} \\
0 & 0 & 0 & u & v & 1 & -u v^{\prime} & -v v^{\prime}
\end{array}\right] \quad \text { and } \quad \mathbf{B}^{T}=\left[\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right]
$$

Now, if we have 2 sets of 4 (non-colinear) points $p_{1}, p_{2}, p_{3}, p_{4}$ and $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime}$, such that $\mathbf{p}_{i}^{\prime}=\mathbf{H} \cdot \mathbf{p}_{i}$, we will have 8 equations similar to (1) that we can use to fill the matrix $\mathbf{A}(8 \times 8)$:

$$
\mathbf{A}=\left[\begin{array}{ccccccccc}
u_{1} & v_{1} & 1 & 0 & 0 & 0 & -u_{1} u_{1}^{\prime} & -v_{1} & u_{1}^{\prime} \\
0 & 0 & 0 & u_{1} & v_{1} & 1 & -u_{1} & v_{1}^{\prime} & -v_{1} \\
v_{1}^{\prime} \\
u_{2} & v_{2} & 1 & 0 & 0 & 0 & -u_{2} u_{2}^{\prime} & -v_{2} & u_{2}^{\prime} \\
0 & 0 & 0 & u_{2} & v_{2} & 1 & -u_{2} & v_{2}^{\prime} & -v_{2} \\
v_{2}^{\prime} \\
u_{3} & v_{3} & 1 & 0 & 0 & 0 & -u_{3} u_{3}^{\prime} & -v_{3} u_{3}^{\prime} \\
0 & 0 & 0 & u_{3} & v_{3} & 1 & -u_{3} v_{3}^{\prime} & -v_{3} v_{3}^{\prime} \\
u_{4} & v_{4} & 1 & 0 & 0 & 0 & -u_{4} u_{4}^{\prime} & -v_{4} & u_{4}^{\prime} \\
0 & 0 & 0 & u_{4} & v_{4} & 1 & -u_{4} v_{4}^{\prime} & -v_{4} & v_{4}^{\prime}
\end{array}\right]
$$

and:

$$
\mathbf{B}^{T}=\left[\begin{array}{llllllll}
u_{1}^{\prime} & v_{1}^{\prime} & u_{2}^{\prime} & v_{2}^{\prime} & u_{3}^{\prime} & v_{3}^{\prime} & u_{4}^{\prime} & v_{4}^{\prime}
\end{array}\right]
$$

The exact solution will come from solving (2) (or computing \mathbf{A}^{-1} and using with (3)). This will provide an exact solution for all the $h_{i j}$ values. Any linear algebra library should be able to compute this.

$$
\begin{equation*}
\mathbf{X}=\mathbf{A}^{-1} \cdot \mathbf{B} \tag{3}
\end{equation*}
$$

If we have more than 4 sets of points, then it will be necessary to use a robust estimator such as RANSAC ${ }^{1}$, as a classical solving using Least Squares is much too sensitive to outliers.

[^0]
[^0]: $\sqrt{1}$ https://en.wikipedia.org/wiki/Random_sample_consensus

