IUT Rouen - SRC1 2012-2013

## Signal sonore - TD 1

## 1 Aspect ondulatoire

1. Compléter le tableau suivant

|   | Célérité $c$ | Période $T$ | Fréquence $f$ | Longueur d'onde $\lambda$ |
|---|--------------|-------------|---------------|---------------------------|
| 1 | 330 m/s      |             | 500 Hz        |                           |
| 2 | 350 m/s      |             |               | 10 cm                     |
| 3 |              |             | 1500 Hz       | 22cm                      |

| 2. | Dans une étuve chauffée à 100°C, la vitesse de propagation du son augmente-t-elle ou diminue- |
|----|-----------------------------------------------------------------------------------------------|
|    | t-elle?:                                                                                      |

3. Calculer la valeur de  $c_{100^{\circ}C}$ , en considérant  $c_{20^{\circ}C}=341m/s$ :

| 4. | Dans un grand gymnase non traité acoustiquement et à température ambiante, je me place au         |
|----|---------------------------------------------------------------------------------------------------|
|    | milieu et je génère une impulsion sonore brève (par ex., claquement de mains, choc d'un objet     |
|    | dur,). Je mesure (avec un appareil ad-hoc) le temps entre l'impulsion et le retour de la première |
|    | réflexion et j'obtiens 43 ms.                                                                     |

Quelle est la hauteur du plafond?:

## 2 Grandeurs physiques et décibels

| 1. | On mesure à un endroit une pression acoustique de 30mPa. |
|----|----------------------------------------------------------|
|    | Ouel sera le niveau sonore en dB-SPL?:                   |

| 2. | On fait en sorte de doubler la pression acoustique. De combien de dB le niveau sonore augmente- |
|----|-------------------------------------------------------------------------------------------------|
|    | t-il:                                                                                           |

**Diffusion en extérieur** On se place en extérieur dans un champ plat, et on dispose une source qui diffuse dans toutes les directions. On mesure à 20 m. un niveau sonore de 85 dB.

- 3. Que vaut la pression acoustique à l'endroit de la mesure?:
- 4. En déduire la valeur locale de l'intensité acoustique  $\mathcal{I}$  : \_\_\_\_\_\_
- 5. On recule de 20 m.
  - (a) Donner la valeur locale de l'intensité acoustique :
  - (b) Donner la valeur de la pression acoustique :
  - (c) En déduire le niveau sonore que devrait afficher le sonomètre :
- 6. Déduire le niveau sonore à 10m : \_\_\_\_\_\_\_; à 1m : \_\_\_\_\_\_

## 3 Fréquence des notes de musique



1. Calculer les fréquences des cordes d'une guitare.

| Corde                        | 6      | 5      | 4      | 3       | 2      | 1      |
|------------------------------|--------|--------|--------|---------|--------|--------|
| Note(notation anglo-saxonne) | E (mi) | A (la) | D (ré) | G (sol) | B (si) | E (mi) |
| Fréquence (Hz)               |        | 110    |        |         |        |        |

2. Combien d'octaves couvre l'audition humaine, en se limitant à la bande 30 Hz-15 kHz : \_\_\_\_\_